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Synopsis

The authors show several aspects of the mechanics of inhomogeneous ma-
terials. They point out the necessity of studying the composites in dependence
on the ratio of the dispersed, dispersing and liquid phases in the system and
propose their classification. They define the functional expressions for the
principal elastic constants of two main composite systems, and suggest the pos-
sibility of describing materials by a single constant, the absorbent of elasticity,
as a general function of the material definition (the composition of the ma-
terial) and its history.

1. Introduction

The development of a physically justified theory of mechanics of
inhomogeneous media should originate from the general but deter-
mining features of composite materials. Two fundamental features of
composite materials with dispersed particles, which are the main deter-
mining factors of their properties if they are considered to be structural
systems, are represented by the structure and the presence of internal
interphase boundaries. It will be shown that both these factors change
expressively but regularly, if the volume ratio of the individual phases
is changed. R

The main mechanical properties of the materials are undoubtedly
their elasticity parameters; therefore, suitable structural models of the
composites were found and their elasticity constants were determined
by means of a suitable combination of identical properties of the com-
ponents.

The dependence of the properties of the material on time and the
complications due to a great number of incommensurable conventional
material constants, however, calls for the introduction of an effective
characteristic function of the material; a proposal for the latter is dis-
cussed in a later section.

The influence of the interface is an independent and extensive
problem and will be treated elsewhere.
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2. Structural Definition of Composites

We have already shown in the Comprehensive Abstract (Ref. 1)
on the basis of experimental data that there exists a striking qualitative
diversity in the properties of materials according to the volume ratios
of the phases. The analysis of the behaviour of any composite in several
distinct classes is, therefore, unavoidable. It was found that the macro-
dispersion structural materials behave differently under external load
primarily according to whether the dispersed solid phase is segregated
or aggregated. In a system with an aggregated solid phase it becomes
immediately significant whether the liquid phase is discontinuous or
continuous, in other words, whether the boundary between the solid
and liquid phases in the superstructure*' is opened or closed*’.

Thus, the composites can be classified, with the usual risk of simpli-
fication, into four fundamental ranges of composition limited by five
limiting systems.
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Fig. 1. Schemes of structural systems.

*! The superstructure is the structure of the system as opposed to the inherent struc-
ture of the individual compounds. The infrastructure is the structure of the dispersed,
dispersing and liquid phases.

*2 [t is then significant whether the dispersing phase is sufficient for forming a continu-
ous matrix or not; in the former case the macrodispersed material is rigid, in the latter
loose.
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In the first range (filled binder) the solid phase b forming the dis-
persing medium (matrix) predominates. The particles of the dispersed
phases a (Fig. 1 (b)) are segregated in the matrix at distances of more
than 24r, where 4r is the thickness of the coated layer of the matrix on
the particle corresponding to the minimum free energy of the system.
This range starts from the first limiting system containing no dispersed
particles, the superstructure being identical with the infrastructure of
the dispersing medium (Fig. 1 (a)), and ends with the second limiting
system. The latter is built up of an aggregate of dispersed particles,
now at a distance of 24, and of the dispersing medium to form a com-
pact material (Fig. 1 (c)). In the first range the liquid phase is not
present in the superstructure (expect for the liquid on the level of the
structural systems). In the other ranges the density of the dispersed
particles in the system remains constant and maximum and the particles
are aggregated.

In the second range (bond filler) the liquid phase ¢ enters into the
system of the superstructure to the detriment of the dispersing medium,
and exists there in confined spaces. In this range, though rather narrow,
the properties of the system change rapidly and considerably (Fig. 1 (c)).
With the increasing volume ratio the spaces with the liquid join up
gradually forming a continuous infrastructural system of the liquid
phase. This determines the third limiting system (Fig. 1 (e)).

In the third range (bond filler) the share of the liquid phase in-
creases further to the detriment of the dispersing medium (Fig. 1 (e)).
The superstructural system is porous and the newly created infrastruc-
tural system of the liquid phase depends on the ambient medium. The
infrastructure of the dispersed phases displays unchanged density up
to the fourth limiting system, where the superstructural system begins
to disintegrate in clusters due to the lack of a primary dispersing medi-
um; the secondary dispersing medium, the liquid phase, at the most
remains among the clusters (Fig. 1 (f)).

In the fourth range the density of the infrastructure of the dispersed
phase increases slightly; the superstructural system, having originally
the nature of a rigid cohesive material, changes to a loose, non-cohesive
material, from a coarse-grained material at first (composed of large
clusters of the used structural systems) to a fine-grained one (composed
only of the dispersed structural systems). This system is obviously the
last, the fifth limiting system when the primary dispersing medium (ma-
trix) fully vanishes (Fig. 1 (g)). If the ambient medium is dry, there
is no liquid phase present in this limiting case, and the superstructural
system is identical with the existing infrastructural system of the dis-
persed phase of the aggregate.

The classification and compositions of the superstructural systems

O
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Fig. 2. Classification and compositions of the superstructural systems.
MS-microstructure (substance), S-structure, IS-infrastructure, SS-
superstructure (of a material, respectively).

of the composites are schematically shown in Fig. 2.

All mechanical and physical properties of the composites at a given
time depend on: (1) the properties of the individual phases, (2) the
volume proportion of these phases in the system, (3) the free-space con-
tent of the dispersed phase, (4) the interaction between the dispersed
and the dispersing phases, and (5) the interaction between' the super-
structure and the ambient medium. Moreover, naturally, they all
depend on time factors, i.e., on the age and history of the individual
phases, the age and history of the superstructure, the rate of change
of the external physical conditions, the loading rate, etc.

The fundamental characteristics of the materials, the constants of
elasticity, are presented below for the two main types of composites:
the filled binder (the first range) and the bond filler (the second and
third ranges).

3. Elastic Constants of the Filled Binder

On formulating the relations between the elastic constants of
the included solid phases on the one hand and the solid compact, quasi-
homogeneous, quasi-isotropic system (of the filled binder type) from
these phases on the other, Dantu (Ref. 2) and Kaplan (Refs. 3, 4) con-
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cluded that Young’s modulus E of a bi-phase system depends on Young’s
moduli, E, and E,, and the volume amounts, P and (1—P), of both the
phases according to Egs. (1) and (2):

1 P  1-P
E°E TR M
E=PE,+(1-P)E,. @

The possibilities of combining the phase moduli with the modulus of
the system were limited by these equations for the case of the neglected
or zero Poisson’s ratios. The limiting nature of these equations was
proved by Paul (Ref. 5) who made use of the minimum strain-work and
the minimum potential energy principles. The boundary systems, be-
having in complete agreement with the above limiting equations, were
demonstrated by Hansen (Refs. 6, 7) as stratified models with the layers
of both the phases either perpendicular or parallel to the direction of
the acting uniaxial stress, called soft and hard materials, respectively.

Since the real elastic behaviour of the bi-phase system corresponds
to a compromise between the limiting formulations, Hirsch (Ref. 8)
and Dougill (Ref. 9) combined Egs. (1) and (2) into a unified Eq. (3):

1 P  1-P 4

=02 (55 ) rr =y ®
Experimental tests of the concrete led to a value of 1/2 for the empirical
quantity 4, this value being assigned to the quasi-isotropy of the real
material, i.e., to the presence of soft and hard materials in equal quan-
tities in it. At this point it should be mentioned that in accordance
with the concept of stratified models a value of 2/3 could result for 4
for this reason.

The first step (Ref. 10) was to establish the following statement in an
unempirical way, exploiting the minimum strain-work principle: An
elastic compliance, understood to be a quantity inverse to the Young’s
modulus, of a real material represents the arithmetical average of both
the compliances of the same system behaving like soft material in one
case, and hard in the other.

The widening of the stratified model concept was the second step
taken. The system with a homogeneous stress-flow density was denoted
as the soft material, where all slips, resulting in zero shears and thus
in an orthogonal behaviour of the system, appear. The hard material
is then represented by a system with a homogeneous strain density where,
contrary to the soft material, all the slips are impossible and the shears
infinite, which, however, also leads to orthogonal behaviour.

Since every elastic behaviour of a real material can then also be
considered orthogonal, representing a compromise between the two
extremes, the authors were able to formulate, with respect to Poisson’s
ratios &, and g, of the phases, the H-D-N relations for Young’s modulus
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E and Poisson’s ratio z# of the compact bi-phase system in Egs. (4) and
(5):
E<ZE.EC, @

F =LB{[A‘2(1 —P)E,+ i PEJC+E E,[p,(1 + ) (1 —2up,) PE,

+pa(l+m) 1 —2p) (I-P)E,]},  (5)
where .
B=[(1—-P)E,+PE;JC+E,Ej[(1+ ) (1 -2.) PE,
+ (142 (1-2p) (1-P)E,]
and
C=[(0+p)PE,+ (1+p) 0—=P)E;][(1—2p) PE,+ (1-2p,) 1—-P) E,).

4. Elastic Constants of the Bond Filler

In view of the independence of the arrangements of the phases in the
compact system, the derived relations lose their purpose in the case
of vacating the volume of one phase; there does not exist any possibility
of a direct widening of the validity of these relations for the porous quasi-
homogeneous quasi-isotropic system.

However, the common porous materials can be divided according
to their morphology into two principal groups, each of the groups being
represented by a real material with a simplified structure of either a foam
or bond filler type. Due to this simplication the number of kinds of
orthogonally shaped structural elements in the skeleton of such a system
is minimized (as well as the number of dimensional parameters). Since
the structural elements of each kind are characterized by a specific me-
chanical behaviour, the possibility of manipulating the porous system
properties from the quasi-phase point of view arises.

In the study of the quasi-homogeneous quasi-isotropic binder-filler
composites along the whole range of compositions, a lot of attention was

(a} (b)

Fig.3. (a) Volume unit of a permeable material of the bond filler type.
(b) Volume unit simplified into the real system.
(c¢) Simplified unit divided into the participant structural elements. -
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paid to the real permeable system: of the bond- filler type (Fig. 3 (a)
to (c)). This approach enabled the authors to formulate the relations
for the Young’s modulus E, (under.external loading, of course) and
the Poisson’s ratio g, as well as ‘the ‘bulk modulus K, under the sole
internal pressure of the said permeable system (of the bond filler, type)
in the dry state according to Egs. (6) to (8). These quantities depend
on the elastic constants-E, # of the homogeneous and isotropic skeleton-
solid and on the dimensions e, & of the structural elements related to
the unit of the system.

Ey=p'E, - ®

to=S@aprH+ D, NG

- ri g 2 E
Ku=9"F 3000 @

where
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I
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’1:1

H|,
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M =2+ —2bp10
2ap—b(1+p) °
N =8(—2p) +buR,
T apt+b(1-2p)
0 = @b (1 —p)’+2ap(1—b)[2an—b(1+p)]
, P(A—p)?—2a(1-2p) 1-5)[2ap—b6(1+p)] °
R = ab(1—p) +ap(l—b)lant+b(1—24)]
T PI-p+a@2-p) (1-b)ap+b(1-24)]

With a large number of bond filler materials the values obtained
from Eqs. (4) and (5) can be exploited for the elastic constants E and
2 in the latter relations.

As regards the structural dimensions ¢ and b, the application of
the results gained from Egs. (9) and (10) where P is the volume amount
of the binder in the solid skeleton;, while ¥, means the volume propor-
tion of .this skeleton in . the whole permeable system, appeared to be
highly satisfactory:

= | PV,
=V3a=p" )
= A-P)V,- (10)

Presenting the last relations concerning the elastic constants of the
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real permeable system of a bond filler type, the restricted significance
of the equations derived for the dry extreme state only must be pointed
out. In order to formulate the corresponding relations for the elastic
constants of the second extreme state, it is useful to return to Egs. (1)
and (2) This system is characterized by an irreversible content of a
liquid in its free inner volume due to the extreme ac Hon of the internal
surface forces. Since between an original empty phase and the skeleton
the soft association could develop, the inherent elastic constants Ey,, 25
of this phase may be obtained from the H-D-N analogue of Eq. (1)
as follows:

—Vo)EE
E’°=—‘——(1E—}50_° , (11)
_ tE—pE, ,
Hro =“E=E, ° (12

The irreversibility of the clogging-up of the inner volume of a per-
meable system by a liquid can be guaranteed only by pure hand interac-
tions between the free volume and the liquid contained, as well as between
the apparent liquid skeleton and the original solid one. A repeated
application of the Eq. (2) H-D-N analogue leads to the elastic con-
stants, depending on the bulk modulus K, of the liquid, at first Ey, z
of the said liquid skeleton and finally on E, gz of the second boundary
system considered:

Ey E;+3(1—2pm) K,
Esro+2(1+p50) (1 —2p250) K,
_ B ro+ (L+p0) (1 —2p50) K,
“r = E p+2(1+ pg0) (1 —2p50) K 19
_[A+2)VPE +1+ 21—V EA( ~26)V S E+(1—24) (1~ VE,]
U+p7) A-2p) VSE+ (1+p) (1-22) A-V) E,

Ey= (13)

E =

(15)
(16)

_el+p) (1 —=2p) VPE+pr(1+p) 1—2p) 1—V,) Ey
(I+un) 1-2u) VIE+(Q+p) 1-20) (1-V)E,. *

Young’s moduli ‘E,, E and Poisson’s ratios g, # of the real perme-
able system of bond filler type, being dry and irreversibly full of
liquid, respectively, represent the extreme values of the elastic constants
of this system. Corresponding constants characterizing the elastic be-
haviour of moist bond filler composites in the ambient conditions at
different humidity levels lie bétween these extreme values.

To illustrate the relations derived the courses of both the elastic
constants of the binder-filler composites were plotted along the whole
range of compositions; the diagrams also present a comparison with the
values obtained by testing typical resin concretes (Fig. 4 (a) and (b)).
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Fig. 4. Relationship of the (a) Young’s moduli E and (b) Poisson’s ratios
 of the binder-filler materials to the filler volume fraction (1—P)

of the total solid.
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5. Elastance of a Material

The elasticity of a material is generally a function of time and the
previous expressions are only valid exactly in the case of zero time of
the history of the material and the phases or, if the constants of elasti-
city of the material components are known at any time, in the case. of
zero time of the history of the material only, for example, as a result of
the time dependence on the contact stresses along the internal boundaries.
In this sense the magnitudes derived in Sections 3 and 4 are to be con-
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sidered as the principal (primary, initial) constants of elasticity.

Because the elasticity and other properties of the material are func-
tions of time, it is necessary to find and define a new constant, based on
the assessment of the energy situation in the system, in order to assess
the material objectively. In our opinion, this approach can be accom-
plished by using the elastance of a material, i.., the measure of the ability
of the material to be elastic over any period of time of its existence. This
ability diminishes gradually, being exhausted by repeated loading or
long-term loading, by temperature or humidity changes, etc. From
this point of view, the elastance is to be understood as the basic qualita-
tive characteristic of the elasticity of a material.

In order to evaluate the elastance quantitatively, a new constant
of elasticity, called the absorbent of elasticity is now introduced. It is
a function of the composition (the definition) of the material M and
its history H, comprising the influence of time, temperature, sense and
way of loading, stress state, etc., i.e.,

A=f (M, H). a7
In the previous paragraphs it was shown that the composition of a struc-
tured material is defined by its principal constants of elasticity, £ and
u. Therefore,
A=F[(E, p), H] . (18)
According to this definition, a single absorbent of elasticity corresponds
to every defined material.

Its maximum exploitable value in a given system corresponds to
the total energy of possible failure (destruction or dehesion energy);
the material once strained or failed possesses a lower value of the ab-
sorbent of elasticity (a lower exploitable energetic reserve), the fully
destructed material possesses a zero exploitable value. The decrease in
the absorbent of elasticity during straining, which is a complementary
value to the expended energy increase, varies from zero to the whole
exploitable value.

A suitable measure of the elastance, for example, can be the ratio
of the permanent and the elastic strains under external loading. The
simultaneous measurement of the axial and the lateral strains in uni-
axial loaded samples confirms that the composites have a different but
characteristically limited absorbent of elasticity: the increased linear
elastance in the axial direction corresponds to the decreasing of the latter
in the lateral direction and vice versa (Fig. 5). The material behaves
as if it could only accumulate (under certain loading) a certain, maxi-
mum amount of energy (manifested by a certain value of permanent
strain). This amount can be absorbed sometimes preferring straining
in the axial, sometimes in the lateral direction, probably in dependence
on other factors not investigated (e.g., the initial state of stress, the com-
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Fig. 5. Ratio of permanent &, and elastic &, strains in axial (solid line)
and lateral (dotted line) directions, respectively, in proportion to
the binder-filler weight relation. Stressing is one-third of the
strength. :

(a) epoxy resin concrete, (b) polyester resin concrete, (c) furanic
resin concrete.

position of the system, etc.).

With increasing stress the elastance decreases in the same way the
absorbent of elasticity decreases. This approach makes it possible to
develop a concept of the final strength;; it will be given by the integral of
the energy consumption, characterized by the absorbent of elasticity.
Because the absorbent of elasticity is a function of all conventional
material characteristics, it can be taken as the fundamental parameter
for their description.

The analysis of this constant and the relationship of the latter
to conventional material characteristics doubtless needs further cor-
roboration; nevertheless the prospective of the description of properties
of every material -by means of a single constant is a very attractive pos-
sibility and the authors are convinced of its reality.
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